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THE EFFECT OF THE SURFACE LAY OF

A STAR UPON BLACK BODY RADIATION

EMERGING FROM THE INTERIOR

Murray Turoff

Brandeis University

ABSTRACT: A form of Burmann's Theorem is used to obtain an expansion

of the radiation intensity at the surface of a star as an

expansion explicitly dependent on the black body function,

absorption coefficient, density, and the first few deriva-

tives of these functions with respect to depth. Conditions

for the convergence of the series are established. The

expansion is modified for the case of organized outward

motion of the surface layer and the effect of this motion

on an absorption line is examined. Conditions for the shift

of the line "center" to lower or higher frequencies due to

the effects of the organized motion and the decay of tempera-

ture in the surface layer are also examined.



Introduction

In the outer layers of a star the marked decrease in the density and

temperature leads to the formation of absorption lines. The actual shape of

the absorption lines we observe is complicated considerably by such effects

in the outer layers as pressure broadening, Doppler broadening, the presence

of a temperature gradient, and organized motion. Although these effects can

be taken into account through a suitable choice of the absorption coefficient

and source function, the resulting integral expression for the radiation in-

tensity is often difficult to treat analytically. In PART I of this paper

we obtain a more convenient form of the radiation intensity by use of a

lemma employing the property of marked decrease in the density which occurs

in the outer layers. We also establish general conditions for the conver-

gence of the resulting expansion. In PART II we treat a specific model

which allows us to re-establish our conditions of convergence in terms of

the commonly used scale-heights of density, temperature, and pressure.

In PART III we modify our original expression to take into account

the presence of organized outward motion. The shift and shape of the line

is examined in detail and an expression for the shift of the "center" of

the line is derived. In PART IV the method employed to expand the radia-

tion intensity is used to obtain a similar expansion for the radiation flux.

The lemma which is used several times in this approach is derived

in the Appendix.
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PART I: Expansion of the Radiative Intensity

Consider a stellar atmosphere under the following assumptions:

(1) The surface or outer layer of the star begins at x - 0 and extends

to x - 0. The density in this surface layer exhibits exponential

decay as its dominant behavior, i.e.:

e OX = 1 (X) e- YA e(1)

where is essentially the scale height of the density and

- > >- for all x.

(2) The interior of wae star is an approximate black-body; therefore the

radiation emerging from the interior and incident on the outer layer

at x - 0 is given by the Planck (black-body) function:W5 v7

B(T_) 1 (2)

where the temperature To  T(X=O).

(3) The outer layer of the star is considered to be in approximate local

thermodynamic equilibrium; however, the decrease in both temperature

and density in this region of the star leads to the presence of

absorption lines in the spectrum of the star.

Under these assumptions we may write the radiation intensity emerging from

the star (plane-parallel atmosphere approximation) as:l293 P4s5

"M + k)S (.)) K(A/X)eA ,

where o

is the optical depth of the surface layer and K(x) is the mass-absorption

coefficient. The first term of (3) is the contribution to the luminosity

from the interior. - cos * where B is the inclination to the outward



normal. Both K and B are functions of the frequency (V).

Because of the assumed exponential decay of the density, we may

employ the relation (All) derived in the Appendix to expand (4) and obtain:

7(Q (x) io (x) X) 111.2. ll (x) VX)
K_ ()F5)

where for any function of x, i.e. A(x), we define

JdA AX , --- 'A (6)
A 7W A 7F

and
, () -I 7

(7)

The function A (x) has units of length and may be thought of as a 'quasi'-

scale height.

We may also apply (All) to (3) to obtain:

-T ((T.z T- L&. 8

A, /

where -I
eKit F e'x (9)

and the right hand side of (8) is evaluated at x 0 0. We notes

k2. = ;k 1 (10)I - ARx

If T(x) is a decreasing function of x as is expected in the photosphere and

lower chromosphere, we note that:

<as B 0 (<)
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Combining the expansions of I+ and 'r we obtain, in lowest order:

-_ ; (12)

AO
The second order terms will be small if condition (11) holds and the follow-

ing conditions are met:

I(33)

+- 4(K ej- ') (( 1

(16)
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PART II: Analysis of Convergence for a Specific Model

To examine the convergence of this expansion in more detail, we

assume the absorption coefficient is the sum of a continuous part and a

line partt4'
5

K() = + K'(X) (17)

with

K A. (EI I- C-(18)

where and k are constants and the factor (1 -4'-) is theXT c kC

correction for stimulated emission. For K (x) we adopt the following forms

which depend on the part of the line shape we are considering:4

t 1 ~II

and

= 4Lj f (X) for (20)

where V 0 is the central frequency, is the natural line width, c is the

velocity of light, and kA is a constant. S fxW is the pressure broaden-

ing width, and VT(x) -( TQ R- - ) is the thermal velocity. Equations

(19) and (20) give K (x) for the center and the wings of the line respec-

tively and are approximations to the more general convolution integral which

is used to combine both the Doppler and Pressure Broadening effects*4 95

We further assume T() T. - / '

e (X) z ee - e (21)
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where T9 AV X are the associated scale heights for these quantities.

While the assumption of a pure exponential behavior for the above quantities

may only approximate a physically realizable situation, it does, however,

allow us to obtain simplified conditions for establishing the validity of our

approach in terms of the scale heights. We list a number of relations which

will be of use:

- =AT - - - (22)

(23)

AT I(26)

Incorporating all these results, we obtain, after some algebra,

,- . (27)

where

for

and

for 4 KIP)
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In order to satisfy (13), we wish XeH(p) to be small when H(V) is

negative. A sufficient condition for this is that is>T)2 is small

compared to one. We see that as either P increases from zero or

increases from zero this condition is relaxed. We therefore require the

following inequalities to be satisfied:

(28)

< < (29)

We now note

X4~ 1 (30)

and CI

=0 (31)

o---1 (32)

______P small

-)

2. large



9xf (k a

Xx it 4 (35)a

We se that condition (28) is sufficient to make the quantities (32) to (34)

small. We also note that (15) is identically zero for a pme exponential

decay of the density. We now require the following quantity is to be small

compared to one:

(36)

It remains only to point out that:

~K- a~)=( k )X(c -a)* 2 ]

(37)

( + 4X jV)

The first two terms are small because of (29) and (36); using this fact, we

may write the last term as:

Kt', + Re+.) 2-
From (24), (25), and (26), we see this quantity is also small under condi-

tions (29) and (36). Furthermore, it is also small when I/ is

either very small or very large compared to unity.

We may now sumcarize that sufficient, but not necessary, conditions

for the expansion to converge for all 0 are:

(1 « + .3". <  .
(2) A .<<(38)

(3)__ _ < i
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The first condition tends to restrict the result to the forward direction

of the radiation (P - 1); otherwise it is only a statement that the outer

layer of the star is optically thin to the black-body radiation from the

interior. The second statement requires the density to decrease faster than

the temperature in the outer layer, which is to be expected for most stellar

photospheres. The third condition certainly holds when either one of the

quantities (natural line width) or , (pressure broadening line width)

greatly exceeds the other. Because of the second condition, we can expect

that A ,%. and that the greatest value expression (3) can therefore

obtain is approximately 1/8.

Therefore, to a good approximation, under conditions (38) we may

use equation (12) for I+(00). Expanding equation (12) for p - 1, we haves

We may Rlso define a deviation, r , from the black-body distribu-

tion:

- ~ ~ ~ ~ K ( 8it_______ ).A ~~e7 A, (4jo)

u( d (9)t ev + K.% t
using relations (7) ad (9) for ;kl and A 2"



PART IIIs Effect of Organized Motion

We now wish to modify the original expansion for I+ (8) to take into

account organized outward motion of matter in the surface layer. The only

change necessary is to replace B ( x,v ) and K x(x, P) in (8) with

x:z ).(x)) and h~ (x,.)?(x)) where

and (1l)

u(x) is the velocity of the organized outward motion and we define the boun-

dary of the surface layer (x -0) as the point where u- 0 and " > 0.

For the steady state, the conservation of current implies eu -

constant; this can be made consistent with the assumptions on the density

variation over any finite interval by choosing u large enough. In fact,

since all physical effects take place in the first few scale heights,

violations of eu - constant are not important at distances greater than

a few times X

We may expand 8 . and K0 to obtain:

,+ 6(r,) 4 . ,<(,)fd +..

(12)

a + P. )~b/ + J I

From the boundary conditions we have established in (41), we note:

.o ( ) -) ()p)
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Assuming AL4< 1, we note that in equation (8) for I+ we need only modify
C

the first order terms; a modification of the second order terms for the

Doppler effect would give third order corrections. We further see that only

the derivatives of B and K are modified which in turn implies that only "i

and A 2 are modified. Defining:

~~7
we have

1 (45)

____________ (h6)

We may then rewrite our first order expression for 1+ (12) as

. ),-

(A- ('0. e))
The Doppler modification of the first order terms for I+ (-equation

(12)] is of the same order of magnitude as the second order terms for I +

found in equation (8), and omitted in our expression (47) for I . However,

for the purpose of attempting to isolate the effect of the outward motion

from the other second order terms, we will neglect this error at present.

A quantity which is correct to the second order is the deviation (V' )

of the Doppler shifted intensity (+) from the normal intensity (1+) . By

taking equation (8) both in the normal form and modified to second order

for the Doppler effect and expanding the exponentials and denominators, we

obtain to second order:
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4

If we assume that B and K are constant with respect to frequency over the

width of the spectral line, we find:

at the center

a. ~ (50)

on the wings. We also find for r itself, from equation (40):

S,(51)

where
-kc e (9 - - -

In the diagram we have indicated roughly the behavior of PDp i# and r 2

over the line width. There is no scale indicated as this may vary greatly

with the respect choice of mary different parameters. Although we have

assumed B constant over the line we see from (23) that the factor I
I - Arp !!x

decreases with increasing frequency. This has the tendency to shift all the

deviations various amounts to the blue as V increases. This shift is

partly due to the temperature gradient, since it arises partly from the term

in B.1 we see that it acts opposite to the organized Doppler shift. The



diagram is only meant to show that if the Doppler effect were dominant, i.e.

the maximum of the line would be shifted to a lower frequency (V P)) ). If

the decrease in temperature is dominant, i.e.

we would expect a shift to the blue (v,)o ). It is possible, under the right

conditions, to obtain a double peak in the absorption line.

In order to try and obtain an equation for the shift of the absorp-

tion line, we may expand (47) under the conditions (38) to obtain:

for L -1 (52)

We may also expand A1 and ; 2 under the same conditions to obtain

-~ '"e~x(53)
Using (23) and (18), we note that forp(diwe have approximtely:

IA bx AT

Carrying only the first order term yieldst

I / (55)
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where

yj ) (56)

(AT - CT 7
Taking the derivative of (55) with respect to V , we obtain the critical

points in the line at the zeroes of this derivative:

=h -f___PA j/ 7 (57)

For the center of the line we have, from equation (19)

~? 2

- - Z *(-r S8) +  58)

where

?-c (59)

when p<, e .find

or

10 Fo T C -V +CENTEA(0

We see from (56) and (60) that under the conditimu

C , ed "' VT (61)
cd. A C +x ir

&
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a shift to increasing frequency will occur. If the condition is violated,

we will have a shift to lower frequency. 1h note that since--_ Je.e and re

are both small numbers under conditions (38) we would expect that VT
is much larger than or C Therefore we may eummarise

that the following conditions hold:

jdu < J- for a shift to the blue
(62)

C rX A 'for a shift to the red

for P small.

These conditions reflect our earlier considerations, made on a more

intuitive basis. The singularity when i .k --- in (60) is spurious, for
c AT

the expansion breaks down in that region.

For P large we find that ;k 2 - 0, which means that the second

term on the right hand side of (52) will be an order of magnitude larger than

the third term. Therefore we expect the Doppler effect to be much smaller

for large P.

We note that K'1 (20) is proportional to and its

derivative proportional to ; therefore, we expect that a similar

analysis, using the pressure broadening coefficient of absorption, leads to

a third degree equation for d - 0 in the first approximation. We

therefore expect that the effect of pressure broadening increases the likeli-

hood of having a double peak in the absorption line. This is due to the

extension of the wings of the line by the pressure broadeing. However,

equation (55) is not accurate enough to examine this possibility.
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PART IVt Expression for the Radiative Flux

To illustrate further the usefulness of the approach used here, we

derive a simple expression for the flux at the surface of the star. Recal-

ling: 1#2
3 #4

FY (4o) 2 (63)
0

where F+ (sc) is the net outward flux, we find that

boo

where Eo 0

Employing the lemma derived in the Appendix plus the expansion for U (x)

also stated in the Appendix, we find:

24KpOk I

where the next terms in the series are of order (kpkA )2, (KPA" )2, and

( ) ( K k ). Equation (65) is a relatively simple expression for the

flux, which may be examined in much the same manner as we have treated the

intensity of radiation.
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Summary

The method discussed here treats the effect of the surface layer of

the star on the black-body radiation emerging from the interior. If the

density in the surface layer falls of rapidly, the expansion obtained for

the intensity of the radiation converges. The advantage of the expansion is

that it involves no integrals and does not seriously limit the form of the

absorption coefficient. The equation for the intensity (8) may therefore

be applied to the particular model or situation one wishes to treat. Fur-

thermore, the resu2ts of the expansion are expressed as a function of 'x,

rather than the optical depth. The equation for the intensity or the flux

as a function of 'x' is perhaps more applicable to problems governing the

general dynamics of the surface layer of the star where the radiative prob-

lem is only one part.

The results we have obtained for the shift of the absorption line

in the case of organized motion is, of course, limited both in accuracy

and the range of applicability. However, accurate results for particular

lines in particular model atmospheres can be obtained quite easily by using

our basic equation (8), modified by (45) and (46) for the Doppler correction,

and a good computer.
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APPENDIXz A Special Form of Burmann's Theorem
6

We wish to derive a form of Burmann's theorem which is useful in

problems of the type considered in this paper.

Given an integral function of x:

( X) dXi

where g(x') is a monotone function from the point x to the point x > x 9

the following relation may be derived:

x0

ke

where Q(x) is an arbitrary monotone function in the interval x to x and the

ai (xo)  may be expressed in terms of Q(x), g(x), and their derivatives,

evaluated at xo . Defining:

I

M JQ (A2)

and taking the derivative of both sides of (Al) with respect to x, wa have:

p(x) E(x 4r-(3)

jzI 4;) -±. Y((X,=,I (A.,).,I) " u

Letting x -* xo in (3), we obtain:

, (.,.) .) 4r . (A,

Now define

.AD

t Of) (;to A) o)-)(5
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Note the identity as x -- xo . We take the derivative of both sides of (A5)

with respect to x; using (A2) we obtain

Ka(X) *( dxk
b+I

(A6)

or equivalently

~)c~&) -(k.+) 4A

The relations (A6) or (A) provide a straightforward procedure for successive-

ly determining the ai's . The only other stipulation necessary is that ai <.e

as x -> x0 which in turn depends on the choice of Q(x).

If g(x) is exactly integrable a suitable choice of Q(x) is equivalent

to doing the integration, as the series will terminate after the required

terms are obtained. A detailed discussion of the convergence properties of

this type of series may be found in reference (6).

As an example, consider the exponential integrals:

I

Let

9(t) t 0~)

we obtain

-- (x -,) - (

for n - 1 using

E/x0) C Ea~r

6~~ - Q~t
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we find

X ho (x) 
The first three terms of these series expresses %n(x) to an accuracy of two

places or better over the whole range of x from zero to infinity.

For our purposes we are interested in integrals of the type:

Oot(,x ' (A8)

where

(A9)

Defining

A dAA (AIO)

we have

A~ (2.jg, ~ja 4 -qrirr) + *(All)

In this case we chose Q(x) - g(x). We see that if g(x) uniquely equalled a

decreasing exponential the expansion would terminate after the first term.

Physically we may think of A as a scale height. Even though g(x) may be a

very complex function, if the dominant behavior was that of an exponential we

expect the series to converge rather rapidly.
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